Abstract

ABSTRACT The topic of this paper is a generalization of the linear model for intrinsic alignments of galaxies to intrinsic flexions: In this model, third moments of the brightness distribution reflect distortions of elliptical galaxies caused by third derivatives of the gravitational potential, or, equivalently, gradients of the tidal gravitational fields. With this extension of the linear model mediating between the brightness distribution and the tidal gravitational fields and with a quantification of the shape of the galaxy at third order provided by the HOLICs-formalism, we are able to compute angular spectra of intrinsic flexions and the cross-spectra with weak lensing flexions. Spectra for intrinsic flexions are typically an order of magnitude smaller than lensing flexions, exactly as in the case of intrinsic ellipticity in comparison to weak shear. We find a negative cross-correlation between intrinsic and extrinsic gravitational flexions, too, complementing the analogous correlation between intrinsic and extrinsic ellipticity. After discussing the physical details of the alignment model to provide intrinsic flexions and their scaling properties, we quantify the observability of the intrinsic and extrinsic flexions and estimate with the Fisher-formalism how well the alignment parameter can be determined from a Euclid-like weak lensing survey. Intrinsic flexions are very difficult to measure and yield appreciable signals only with highly optimistic parameter choices and noise levels, while being basically undetectable for more realistic flexion measurement errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.