Abstract

There are many candidate materials that can be used as channel materials for the next-generation field effect transistors (FETs). CrI3 is one of the particular candidates for application in FET, because it is a two-dimensional (2D) ferromagnet and has giant tunneling magnetoresistance. The ferromagnetic nature extends to not only electronics but also spintronics. In this study, the large-area, layered, and crystalline 2D CrI3 were synthesized by horizontal Bridgman method. The suspended CrI3 FETs were fabricated for explorations of intrinsic electron transport in the CrI3 channel and of electrical contact problems. The suspended FET structure lets the CrI3 channel free from trapping charges in the SiO2-capped Si substrate. The on–off ratio of the suspended CrI3 FET is up to 104, making the 2D layered CrI3 potential for future FETs. The investigations of the mobility and the interface-trap density at various temperatures reveal that the trapping charges as well as the interface-trap densities are increased with further gas adsorption on the surface of the CrI3 flake. The performance of the suspended CrI3 FET can be improved, if the gas adsorption problem can be carefully treated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.