Abstract

Organic-inorganic hybrid perovskites such as MAPbI3 (MA+ = CH3NH3+) have emerged as promising materials for solar cells and light-emitting devices. Despite their poor stability against moisture, perovskites work as hydrogen-producing photocatalysts or photosensitizers in perovskite-saturated aqueous solutions. However, the fundamental understanding of how chemical species or support materials in the solution affect the dynamics of the photogenerated charges in perovskites is still insufficient. In this study, we investigated the photoluminescence (PL) properties of MAPbI3 nanoparticles in aqueous media at the single-particle level. A remarkable PL blinking phenomenon, along with significant decreases in the PL intensity and lifetime compared to those in ambient air, suggested temporal fluctuations in the trapping rates of photogenerated holes by chemical species (I- and H3PO2) in the solution. Moreover, electron transfer from the excited MAPbI3 to Pt-modified TiO2 proceeds in a concerted fashion for photocatalytic hydrogen evolution under the dynamic solid-solution equilibrium condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call