Abstract

To evaluate the diagnostic efficacy of intravoxel incoherent motion (IVIM) parameters in hepatitis B virus (HBV)-induced hepatic fibrosis using different calculation methods and to investigate histopathologic origins. Liver biopsies from 37 prospectively recruited chronic hepatitis B patients were obtained. Twelve b-value (0-1000s/mm2) diffusion-weighted imaging (DWI) was performed with a 1.5T scanner and was followed by blinded percutaneous liver biopsy. All biopsy specimens were evaluated with Ishak staging, and the microvascular density (MVD) was calculated. Patients were classified as having no/mild (F0-1), moderate (F2-3), or marked (F4-5) fibrosis. Pseudodiffusion (D*), the perfusion fraction (f), and the apparent diffusion coefficient (ADC) were calculated using all b-values, while true diffusion (D) was calculated using all b-values [D0-1000] and b-values greater than 200s/mm2 [D200-1000]. Three concentric regions of interest (ROIs) (5, 10, and 20mm) centered on the biopsy site were used. D* was correlated with the MVD (p = 0.015, Pearson's r = 0.415), but f was not (p = 0.119). D0-1000 was inversely correlated with Ishak stage (p = 0.000, Spearman's rs = - 0.685) and was significantly decreased in all the fibrosis groups; however, only the no/mild and marked fibrosis groups had significantly different D200-1000 values. A pairwise comparison of receiver operating characteristic (ROC) curves ofD0-1000 and D200-1000 showed significant differences (p = 0.039). D* was the best at discriminating early fibrosis (AUC = 0.861), while the ADC best discriminated advanced fibrosis (AUC = 0.964). D* was correlated with the MVD and is a powerful parameter to discriminate early hepatic fibrosis. D significantly decreased with advanced fibrosis stage when using b-values less than 200s/mm2 in calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.