Abstract

Uveitis encompasses a heterogeneous and complex group of conditions characterized by intraocular inflammation, frequently affecting young individuals and representing an important cause of irreversible blindness worldwide. Animal models have been critical to understand etiology and pathogenesis of uveitis, being also employed to assess new therapeutic strategies, preceding human studies. However, there is still a need of developing and studying different models, due to the difficulties in recapitulating all forms of human uveitis effectively. Although corticosteroids are usually the first-line therapy for non-infectious uveitis, their long-term use is limited by potentially serious side effects in all possible delivery routes. Thus, thalidomide, a drug with anti-inflammatory and antiangiogenic properties, was investigated in a novel experimental model of uveitis, induced by Mycobacterium bovis Calmette-Guérin Bacillus (BCG), in rabbits. The experimental protocol consisted of two subcutaneous injections of BCG, followed by two intravitreal injections of the same antigen, inducing panuveitis. Animals were treated with a single intravitreal injection of thalidomide suspension or PBS. Clinical manifestations of uveitis improved after intravitreal thalidomide, involving both anterior and posterior segments. Protein content, N-acetyl-b-glucosaminidase (NAG) and myeloperoxidase (MPO) activities were elevated in ocular tissues after disease induction, further decreasing post-treatment with intravitreal thalidomide. This therapeutic response was also confirmed on ocular electrophysiology, as well as histopathology. This experimental model induced panuveitis in rabbits using a low-cost mycobacterial antigen, with intraocular inflammation subsequently improving after treatment. Intravitreal thalidomide may be a potential alternative to treat intraocular inflammation in corticosteroid-sparing therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.