Abstract

BackgroundDiabetic retinopathy is a common complication of diabetes and the leading cause of irreversible vision loss in the Western world. The reduction in color/contrast sensitivity due to the loss of neural cells in the ganglion cell layer of the retina is an early event in the onset of diabetic retinopathy. Multipotent mesenchymal stromal cells (MSCs) are an attractive tool for the treatment of neurodegenerative diseases, since they could differentiate into neuronal cells, produce high levels of neurotrophic factors and reduce oxidative stress. Our aim was to determine whether the intravitreal administration of adipose-derived MSCs was able to prevent the loss of retinal ganglion cells in diabetic mice.MethodsDiabetes was induced in C57BL6 mice by the administration of streptozotocin. When retinal pro-damage mechanisms were present, animals received a single intravitreal dose of 2 × 105 adipose-derived MSCs or the vehicle. Four and 12 weeks later we evaluated: (a) retinal ganglion cell number (immunofluorescence); (b) neurotrophic factor levels (real-time quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA)); (c) retinal apoptotic rate (TUNEL); (d) retinal levels of reactive oxygen species and oxidative damage (ELISA); (e) electrical response of the retina (electroretinography); (f) pro-angiogenic and anti-angiogenic factor levels (RT-qPCR and ELISA); and (g) retinal blood vessels (angiography). Furthermore, 1, 4, 8 and 12 weeks post-MSC administration, the presence of donor cells in the retina and their differentiation into neural and perivascular-like cells were assessed (immunofluorescence and flow cytometry).ResultsMSC administration completely prevented retinal ganglion cell loss. Donor cells remained in the vitreous cavity and did not differentiate into neural or perivascular-like cells. Nevertheless, they increased the intraocular levels of several potent neurotrophic factors (nerve growth factor, basic fibroblast growth factor and glial cell line-derived neurotrophic factor) and reduced the oxidative damage in the retina. Additionally, MSC administration has a neutral effect on the electrical response of the retina and did not result in a pathological neovascularization.ConclusionsIntravitreal administration of adipose-derived MSCs triggers an effective cytoprotective microenvironment in the retina of diabetic mice. Thus, MSCs represent an interesting tool in order to prevent diabetic retinopathy.Electronic supplementary materialThe online version of this article (doi:10.1186/s13287-016-0299-y) contains supplementary material, which is available to authorized users.

Highlights

  • Diabetic retinopathy is a common complication of diabetes and the leading cause of irreversible vision loss in the Western world

  • We evaluated whether an intravitreal administration of adipose-derived Mesenchymal stromal cell (MSC) was able to prevent the loss of Retinal ganglion cell (RGC) in diabetic mice

  • We found that the intravitreal administration of MSCs increases neurotrophic factor levels, reduces oxidative damage of the retina and prevents RGC loss in diabetic mice

Read more

Summary

Introduction

Diabetic retinopathy is a common complication of diabetes and the leading cause of irreversible vision loss in the Western world. DR has been recognized primarily as a vascular disorder that involves pericyte loss, basement membrane thickening and endothelial dysfunction involving loss of retinal barrier integrity which leads to hemorrhage, vascular obliteration and the resulting neovascularization [6]. These events subsequently cause fibrovascular proliferation and blindness [6]. Today DR is considered a sensory neuropathy [9]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call