Abstract

Complications after lung transplantation are largely related to the host immune system responding to the graft. Such immune responses are regulated by crosstalk between donor and recipient cells. A better understanding of these processes relies on the use of preclinical animal models and is aided by an ability to study intra-graft immune cell trafficking in real-time. Intravital two-photon microscopy can be used to image tissues and organs for depths up to several hundred microns with minimal photodamage, which affords a great advantage over single-photon confocal microscopy. Selective use of transgenic mice with promoter-specific fluorescent protein expression and/or adoptive transfer of fluorescent dye-labeled cells during intravital two-photon microscopy allows for the dynamic study of single cells within their physiologic environment. Our group has developed a technique to stabilize mouse lungs, which has enabled us to image cellular dynamics in naïve lungs and orthotopically transplanted pulmonary grafts. This technique allows for detailed assessment of cellular behavior within the vasculature and in the interstitium, as well as for examination of interactions between various cell populations. This procedure can be readily learned and adapted to study immune mechanisms that regulate inflammatory and tolerogenic responses after lung transplantation. It can also be expanded to the study of other pathogenic pulmonary conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.