Abstract
Long-term bed rest has potential risks of bone loss and renal stone formation. We examined the effects of resistive exercise and intravenous pamidronate on BMD, bone turnover, urinary calcium, and renal stone formation in 25 healthy males during 90-day bed rest. Pamidronate prevented femoral bone loss and renal stone formation, but resistive exercise showed little effects. Long-term bed rest increases the risks of bone loss and urinary stone formation. Resistive exercise increases bone formation, and bisphosphonates reduce bone resorption. However, the effects of muscle exercise and bisphosphonates have not been examined side-by-side. The objectives of this study are to compare the effects of pamidronate with resistive exercise on BMD and renal stone formation during prolonged bed rest. Twenty-five male white volunteers, 26-45 years of age, were randomly assigned to the control (n = 9), exercise (n = 9), and pamidronate (n = 7) groups and underwent 90-day 6 degrees head-down tilt bed rest. Exercise group performed squats and heel raises on a flywheel device for 30 minutes every 3 days. Pamidronate (60 mg) was administered intravenously 14 days before bed rest. BMD of the head, forearm, lumbar spine, and proximal femur; biochemical bone markers; calcium (Ca) metabolism; and abdominal radiographs were examined during 90 days of bed rest and 360 days of reloading. In controls, proximal femoral BMD decreased, and bone resorption markers and urinary Ca increased during bed rest, along with development of renal stones in two of nine subjects. Resistive exercise increased bone formation but was unable to prevent femoral BMD decrease and increases in bone resorption and urinary Ca during bed rest, with formation of renal stones in four of nine subjects. Pamidronate maintained femoral BMD, reduced bone resorption and urinary Ca, and completely prevented renal stone formation. Resistive exercise increased bone formation but could not reduce bone resorption and the risk of renal stones. In contrast, inhibition of bone resorption by pamidronate could preserve bone mineral and reduce the risk of renal stone formation during prolonged bed rest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.