Abstract

Although asthma is a common chronic airway disease that responds well to anti-inflammatory agents, some patients with asthma are unresponsive to conventional treatment. Mesenchymal stem cells (MSCs) have therapeutic potential for the treatment of inflammatory diseases owing to their immunomodulatory properties. However, the target cells of MSCs are not yet clearly known. This study aimed to determine the effect of human umbilical cord-derived MSCs (hUC-MSCs) on asthmatic lungs by modulating innate immune cells and effector T cells using a murine asthmatic model. Intravenously administered hUC-MSCs reduced airway resistance, mucus production, and inflammation in the murine asthma model. hUC-MSCs attenuated not only T helper (Th) 2 cells and Th17 cells but also augmented regulatory T cells (Tregs). As for innate lymphoid cells (ILC), hUC-MSCs effectively suppressed ILC2s by downregulating master regulators of ILC2s, such as Gata3 and Tcf7. Finally, regarding lung macrophages, hUC-MSCs reduced the total number of macrophages, particularly the proportion of the enhanced monocyte-derived macrophage population. In a closer examination of monocyte-derived macrophages, hUC-MSCs reduced the M2a and M2c populations. In conclusion, hUC-MSCs can be considered as a potential anti- asthmatic treatment given their therapeutic effect on the asthmatic airway inflammation in a murine asthma model by modulating innate immune cells, such as ILC2s, M2a, and M2c macrophages, as well as affecting Tregs and effector T cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call