Abstract

Colorectal cancer is a disease of unmet medical need. Although extracellular vesicles (EVs) have been implicated in anti-tumor responses, discrepancies were observed among studies. We analyzed the role of tumor-derived EVs (TEVs) in tumor progression in vivo by focusing on regulatory T (Treg) cells, which play essential roles in tumor development and progression. A mouse model of colorectal cancer lung metastasis was generated using BALB/c mice by tail vein injection of the BALB/c colon adenocarcinoma cell line Colon-26. TEVs derived from Colon-26 and BALB/c lung squamous cell carcinoma ASB-XIV were retrieved from the culture media supernatants. A TEV equivalent to 10µg protein was injected every other day for 2weeks. Histology and immunohistochemistry studies revealed that lung tumors reduced in the Colon-26-EV group when compared to the phosphate-buffered saline (PBS) group. The population of CD4 + FoxP3 + cells in the lung was upregulated in the PBS group mice when compared to the healthy mice (P < 0.001), but was significantly downregulated in the Colon-26-EV group mice when compared to the PBS group mice (P < 0.01). Programmed cell death protein 1, glucocorticoid-induced TNFR-related protein, and CD69 expression in lung Treg cells were markedly upregulated in the PBS group when compared to the healthy mice, but downregulated in the Colon-26-EV group when compared to the PBS group. The changes in expression were dose-dependent for Colon-26-EVs. ASB-EVs also led to significantly downregulated Treg cell expression, although non-cancer line 3T3-derived EVs did not. Our study suggests that TEVs possess components for tumor suppression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call