Abstract

Globoid cell leukodystrophy (GLD) or Krabbe disease is an autosomal recessive disorder resulting from the defective lysosomal enzyme galactocerebrosidase (GALC). The lack of GALC enzyme leads to severe neurological symptoms. While most human patients are infants who do not survive beyond 2 years of age, older patients are also diagnosed. In addition to human patients, several naturally occurring animal models, including dog, mouse, and monkey, have also been identified. The mouse model of Krabbe disease, twitcher (twi) mouse has been used for many treatment trials including gene therapy. Using the combination of intracerebroventricular, intracerebellar, and intravenous (iv) injection of the adeno-associated virus serotype rh10 (AAVrh10) expressing mouse GALC in neonate twi mice we previously have demonstrated a significantly extended normal life and exhibition of normal behavior in treated mice. In spite of the prolonged healthy life of these treated mice and improved myelination, it is unlikely that using multiple injection sites for viral administration will be approved for treatment of human patients. In this study, we have explored the outcome of the single iv injection of viral vector at post-natal day 10 (PND10). This has resulted in increased GALC activity in the central nervous system (CNS) and high GALC activity in the peripheral nervous system (PNS). As we have shown previously, an iv injection of AAVrh10 at PND2 results in a small extension of life beyond the typical lifespan of the untreated twi mice (~40 days). In this study, we report that mice receiving a single iv injection at PND10 had no tremor and continued to gain weight until a few weeks before they died. On average, they lived 20-25 days longer than untreated mice. We anticipate that this strategy in combination with other therapeutic options may be beneficial and applicable to treatment of human patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.