Abstract

Intravascular near-infrared fluorescence (NIRF) imaging is a new approach for characterizing the physiological features of atherosclerotic plaque, but random catheter positioning within the vessel results in non-quantitative measurements due to light attenuation through variable distances through blood. We hypothesized that the construction of a combined NIRF-intravascular ultrasound (IVUS) catheter would enable tracking of the catheter position within the blood vessel and permit corrections to NIRF measurements taken at variable distances from the vessel wall. In this study, a combined NIRF-IVUS catheter was designed, co-registered NIRF and IVUS data was acquired in vessel phantoms and ex vivo arteries, depth-dependent attenuation of the fluorescent signal was corrected by an analytical light propagation model. Average root-mean-square error between NIRF estimates of fluorophore concentrations and known concentrations of fluorescent targets in coronary artery phantoms improved from 94.9% to 16.2% following NIRF corrections. We demonstrate that catheter-to-vessel wall distances derived from IVUS imaging can be employed to correct for inaccuracies caused by random NIRF catheter sensing distances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.