Abstract
Newer techniques are required to identify atherosclerotic lesions that are prone to rupture. Electric impedance spectroscopy (EIS) can characterize biological tissues by measuring the electrical impedance over a frequency range. We tested a newly designed intravascular impedance catheter (IC) by measuring the impedance of different stages of atherosclerosis induced in an animal rabbit model. Six female New Zealand White rabbits were fed for 17 weeks with a 5% cholesterol-enriched diet to induce early forms of atherosclerotic plaques. All aortas were prepared from the aortic arch to the renal arteries and segments of 5-10 mm were marked by ink spots. A balloon catheter system with an integrated polyimide-based microelectrode structure was introduced into the aorta and the impedance was measured at each spot by using an impedance analyzer. The impedance was measured at frequencies of 1 kHz and 10 kHz and compared with the corresponding histomorphometric data of each aortic segment.Forty-four aortic segments without plaques and 48 segments with evolving atherosclerotic lesions could be exactly matched by the histomorphometric analysis. In normal aortic segments (P0) the change of the magnitude of impedance at 1 kHz and at 10 kHz (|Z|(1 kHz) - |Z|(10 kHz), = ICF) was 208.5 +/- 357.6 Omega. In the area of aortic segments with a plaque smaller than that of the aortic wall diameter (PI), the ICF was 137.7 +/- 192.8 Omega. (P 0 vs. P I; p = 0.52), whereas in aortic segments with plaque formations larger than the aortic wall (PII) the ICF was significantly lower -22.2 +/- 259.9 Omega. (P0 vs. PII; p = 0.002). Intravascular EIS could be successfully performed by using a newly designed microelectrode integrated onto a conventional coronary balloon catheter. In this experimental animal model atherosclerotic aortic lesions showed significantly higher ICF in comparison to the normal aortic tissue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.