Abstract

The objective was to investigate circulating concentrations of bone formation markers (undercarboxylated osteocalcin [Glu-OC], an established marker of bone formation during fetal and early postnatal life], and Dickkopf-1 [DKK-1], a natural inhibitor of osteoblastogenesis during fetal development]) in intrauterine-growth–restricted (IUGR; associated with impaired fetal skeletal development) and appropriate-for-gestational-age (AGA) pregnancies. Circulating concentrations of Glu-OC and DKK-1 were determined by enzyme immunoassay in 40 mothers and their 20 asymmetric IUGR and 20 AGA singleton full-term fetuses and neonates on postnatal day 1 (N1) and 4 (N4). Parametric tests were applied in the statistical analysis. No significant differences in Glu-OC concentrations were observed between IUGR and AGA groups, whereas fetal DKK-1 concentrations were lower in the IUGR group (P = .028). In both groups, maternal Glu-OC and DKK-1 concentrations were lower than fetal, N1, and N4 concentrations (P ≤ .012 in all cases), whereas fetal Glu-OC concentrations were higher than N1 and N4 ones (P ≤ .037 in all cases). In addition, N1 Glu-OC concentrations were higher than N4 concentrations (P = .047). Finally, maternal Glu-OC and DKK-1 concentrations positively correlated with fetal, N1, and N4 ones (r ≥ 0.404, P ≤ .01 in all cases). Fetal/neonatal bone formation may not be impaired in full-term asymmetric IUGR infants, as indicated by the similar Glu-OC concentrations in both groups. Fetal DDK-1 concentrations are lower in the IUGR group, representing probably a compensatory mechanism, favoring the formation of mineralized bone. Fetal/neonatal bone turnover is markedly enhanced compared with maternal one and seems to be associated with the latter in both late pregnancy and early postpartum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.