Abstract

IntroductionIntrauterine growth restriction (IUGR) is a leading cause of perinatal mortality and morbidity, and is linked to an increased risk to develop chronic diseases in adulthood. We previously demonstrated that IUGR is associated, in female neonates, with a decreased nitric oxide (NO)-induced relaxation of the umbilical vein (UV). The present study aimed to investigate the contribution of the smooth muscle components of the NO/cyclic GMP (cGMP) pathway to this alteration. MethodsUVs were collected in growth-restricted or appropriate for gestational age (AGA) human term newborns. Soluble guanylyl cyclase (sGC) and cGMP-dependent protein kinase (PKG) were studied by Western blot, cGMP production by ELISA and cyclic nucleotide phosphodiesterases (PDEs) activity using a colorimetric assay. Contribution of PDEs was evaluated using the non-specific PDEs inhibitor 3-isobutyl-1-methylxanthine (IBMX) in isolated vessel tension studies. ResultsNO-induced relaxation was reduced in IUGR females despite increased sGC protein and activity, and some increase in PKG protein compared to AGA. In males, no significant difference was observed between both groups. In the presence of IBMX, NO-stimulated cGMP production was significantly higher in IUGR than AGA females. Pre-incubation with IBMX significantly improved NO-induced relaxation in all groups and abolished the difference between IUGR and AGA females. ConclusionIUGR is associated with sex-specific alterations in the UV's smooth muscle. The impaired NO-induced relaxation observed in growth-restricted females is linked to an imbalance in the NO/cGMP pathway. The beneficial effects of IBMX suggest that PDEs are implicated in such alteration and they could represent promising targets for therapeutic intervention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.