Abstract

The effects of prenatal cocaine exposure on the development of the rabbit cerebral cortex were studied. Two cortical areas were compared: primary visual cortex (VC) and anterior cingulate (ACC). ACC was selected because behavioral deficits observed in cocaine-exposed infants suggest the involvement of ACC. In addition, ACC receives dense dopaminergic innervation and cocaine's action in inhibiting the re-uptake of dopamine is believed to underly the rewarding properties of cocaine. VC was selected as a control area because there is no evidence of behavioral deficits associated with visual perception in cocaine-exposed infants, and because VC receives minimal dopaminergic innervation. Two aspects of cortical development was studied: (i) cortical morphology, growth and cytoarchitectonic organization; and (ii) the development of the GABAergic neurotransmitter system. Measures of postnatal cortical growth, including cortical lamination, cell number and soma size, were compared in cocaine-exposed or control (saline) rabbits aged P5–P60. There was no difference between cocaine and saline animals in any of these parameters, and cortical cytoarchitecture appeared normal. However, despite the absence of major abnormalities in cortical development, we found that the number of GABA-immunoreactive neurons in cocaine-exposed animals was significantly higher than normal in ACC. This effect was highly consistent, was present in all laminae and at all ages studied, and persisted into maturity (P60). In contrast, in VC, the number of GABA-immunoreactive neurons in cocaine-exposed animals did not differ from normal. We suggest that increased GABA immunoreactivity may reflect a compensatory response to excessive excitatory input to ACC. A change in the balance of excitation and inhibition in ACC, reflecting ‘noisy’ or dysfunctional intracortical circuitry, may underly the emotional lability and attentional deficits characteristically described in infants exposed in utero to cocaine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.