Abstract

This study was conducted to determine the antitumor effects and ability of an anlotinib (AL) hydrogel (AL–HA–Tyr) to reduce toxicity in a mouse model of Lewis lung cancer (LLC). We constructed a drug carrier system for AL, verified its effectiveness and systemic safety, and provided a preliminary experimental foundation for clinical carrier transformation. AL–HA–Tyr was prepared by encapsulating AL with hyaluronic acid–tyramine (HA–Tyr) conjugates. Colony and tube formation assays showed that AL–HA–Tyr restrained the proliferation of human umbilical vein endothelial cells (HUVECs) and LLC cells, respectively, in vitro, and that AL exerted significant anti-angiogenesis and anti-tumor effects. The invasion and migration of HUVECs and LLC cells were efficiently suppressed by AL according to transwell assays. HUVEC and LLC cell-cycle and apoptosis analysis clarified the direct anti-tumor effects of AL–HA–Tyr. Mice engrafted with LLC cells in vivo were administered oral saline, oral AL, or an intratumoral injection of HA–Tyr or AL–HA–Tyr. The results showed that AL–HA–Tyr obviously reduced visceral toxicity and decreased Ki67 and VEGF-A expression in tumor cells compared with AL. Furthermore, AL–HA–Tyr significantly prolonged the survival of tumor-bearing mice. Overall, AL–HA–Tyr enhanced antitumor effects and reduced toxicity in the LLC model. It provided a foundation for the clinical transformation of drug carrier systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call