Abstract

BackgroundIn this study, we evaluated the ability of radiomic textural analysis of intratumoral and peritumoral regions on pretreatment breast cancer dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to predict pathological complete response (pCR) to neoadjuvant chemotherapy (NAC).MethodsA total of 117 patients who had received NAC were retrospectively analyzed. Within the intratumoral and peritumoral regions of T1-weighted contrast-enhanced MRI scans, a total of 99 radiomic textural features were computed at multiple phases. Feature selection was used to identify a set of top pCR-associated features from within a training set (n = 78), which were then used to train multiple machine learning classifiers to predict the likelihood of pCR for a given patient. Classifiers were then independently tested on 39 patients. Experiments were repeated separately among hormone receptor-positive and human epidermal growth factor receptor 2-negative (HR+, HER2−) and triple-negative or HER2+ (TN/HER2+) tumors via threefold cross-validation to determine whether receptor status-specific analysis could improve classification performance.ResultsAmong all patients, a combined intratumoral and peritumoral radiomic feature set yielded a maximum AUC of 0.78 ± 0.030 within the training set and 0.74 within the independent testing set using a diagonal linear discriminant analysis (DLDA) classifier. Receptor status-specific feature discovery and classification enabled improved prediction of pCR, yielding maximum AUCs of 0.83 ± 0.025 within the HR+, HER2− group using DLDA and 0.93 ± 0.018 within the TN/HER2+ group using a naive Bayes classifier. In HR+, HER2− breast cancers, non-pCR was characterized by elevated peritumoral heterogeneity during initial contrast enhancement. However, TN/HER2+ tumors were best characterized by a speckled enhancement pattern within the peritumoral region of nonresponders. Radiomic features were found to strongly predict pCR independent of choice of classifier, suggesting their robustness as response predictors.ConclusionsThrough a combined intratumoral and peritumoral radiomics approach, we could successfully predict pCR to NAC from pretreatment breast DCE-MRI, both with and without a priori knowledge of receptor status. Further, our findings suggest that the radiomic features most predictive of response vary across different receptor subtypes.

Highlights

  • In this study, we evaluated the ability of radiomic textural analysis of intratumoral and peritumoral regions on pretreatment breast cancer dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to predict pathological complete response to neoadjuvant chemotherapy (NAC)

  • We demonstrated that separation of TN/Human epidermal growth factor receptor 2 (HER2)+ enabled more accurate prediction of pathological complete response (pCR) (AUC = 0.93 ± 0.018) than in the hormone receptor (HR)+, HER2− cohort, a surprising reversal of the receptor status group accuracies reported in experiment 1

  • There is a lack of imaging markers that enable noninvasive pretreatment prediction of pCR

Read more

Summary

Introduction

We evaluated the ability of radiomic textural analysis of intratumoral and peritumoral regions on pretreatment breast cancer dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to predict pathological complete response (pCR) to neoadjuvant chemotherapy (NAC). For the 10% to 20% of the 230,000 patients diagnosed with breast cancer each year [1] who have locally advanced breast cancer, it is imperative to receive effective treatment as quickly as possible. These patients sit at a critical clinical juncture: Their tumor has spread beyond the breast to the chest wall, skin, or lymph nodes but has not yet metastasized further. Less than 10– 50% of breast cancer patients who undergo NAC achieve pCR, depending on receptor status subtype [6], and there is a need for reliable noninvasive pretreatment predictors of pCR that can enable better targeting of NAC and prevent a delay in effective treatment for patients with nonresponding or progressive tumors

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call