Abstract
To develop a comprehensive nomogram based on MRI intra- and peritumoral radiomics signatures and independent risk factors for predicting parametrial invasion (PMI) in patients with early-stage cervical adenocarcinoma (AC) and adenosquamous carcinoma (ASC). A total of 460 patients with IB to IIB cervical AC and ASC who underwent preoperative MRI examination and radical trachelectomy/hysterectomy were retrospectively enrolled and divided into primary, internal validation, and external validation cohorts. The original (Ori) and wavelet (Wav)-transform features were extracted from the volumetric region of interest of the tumour (ROI-T) and 3mm- and 5mm-peritumoral rings (ROI-3 and ROI-5), respectively. Then the Ori and Ori-Wav feature-based radiomics signatures from the tumour (RST) and 3 mm- and 5 mm-peritumoral regions (RS3 and RS5) were independently built and their diagnostic performances were compared to select the optimal ones. Finally, the nomogram was developed by integrating optimal intra- and peritumoral signatures and clinical independent risk factors based on multivariable logistic regression analysis. FIGO stage, disruption of the cervical stromal ringon MRI (DCSRMR), parametrial invasion on MRI (PMIMR), and serum CA-125 were identified as independent risk factors. The nomogram constructed by integrating independent risk factors, Ori-Wav feature-based RST, and RS5 yielded AUCs of 0.874 (0.810-0.922), 0.885 (0.834-0.924), and 0.966 (0.887-0.995) for predicting PMI in the primary, internal and external validation cohorts, respectively. Furthermore, the nomogram was superior to radiomics signatures and clinical model for predicting PMI in three cohorts. The nomogram can preoperatively, accurately, and noninvasively predict PMI in patients with early-stage cervical AC and ASC. The nomogram can preoperatively, accurately, and noninvasively predict PMI and facilitate precise treatment decisions regarding chemoradiotherapy or radical hysterectomy in patients with early-stage cervical AC and ASC. The accurate preoperative prediction of PMI in early-stage cervical AC and ASC can facilitate precise treatment decisions regarding chemoradiotherapy or radical hysterectomy. The nomogram integrating independent risk factors, Ori-Wav feature-based RST, and RS5 can preoperatively, accurately, and noninvasively predict PMI in early-stage cervical AC and ASC. The nomogram was superior to radiomics signatures and clinical model for predicting PMI in early-stage cervical AC and ASC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.