Abstract

Despite the success of chimeric antigen receptor (CAR) T cells in hematologic malignancies, adoptive cell therapy (ACT) has not been effective in treating solid tumors. Here, we developed an inflammatory macrophage-based ACT to effectively treat solid tumors. We engineered inflammatory macrophages to enhance their antitumor activities, including proinflammatory cytokine secretion and co-stimulatory molecule expression by co-activating toll-like receptor and stimulator of interferon genes signaling pathways. Engineered macrophages maintain an inflammatory phenotype after their adoptive transfer into the anti-inflammatory tumor microenvironment (TME), whereas conventional inflammatory macrophages prepared using interferon-γ treatment are repolarized to an anti-inflammatory phenotype. In a mouse melanoma model, intratumoral adoptive transfer of engineered macrophages showed robust tumor growth inhibition by increasing CD8+ T cells in the TME and tumor antigen-specific CD8+ T cells in the blood. This study demonstrated that engineered inflammatory macrophages have potential as an effective ACT for treating solid tumors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.