Abstract

Myasthenia gravis is a typical acetylcholine receptor (AChR) antibody-mediated autoimmune disease in which thymus frequently presents follicular hyperplasia or thymoma. It is now widely accepted that the thymus is probably the site of AChR autosensitization and autoantibody production. However, the exact mechanism that triggers intrathymic AChR antibody production is still unknown. T follicular helper cells, recently identified responsible for B cell maturation and antibody production in the secondary lymphoid organs, were involved in many autoimmune diseases. Newly studies found T follicular helper (Tfh) cells increased in the peripheral blood of myasthenia gravis (MG). Whether it appears in the thymus of MG and its role in the intrathymic B cells help and autoantibody production is unclear. Therefore, this study aims to determine in more detail whether Tfh/B cell interaction exist in MG thymus and to address its role in the ectopic germinal centers (GCs) formation and AChR antibody production. We observed the frequency of Tfh cells and its associated transcription factor Bcl-6, key cytokine IL-21 enhanced both in the thymocytes and peripheral blood mononuclear cells (PBMCs) of MG patients. In parallel, we also showed increased B cells and autoantibody titers in MG peripheral blood and thymus. Confocal microscope results demonstrated Tfh and B cells co-localized within the ectopic GCs in MG thymus, suggesting putative existence of Tfh/B cells interaction. In vitro studies further showed dynamic behavior of Tfh/B cells interaction and Tfh cells induced autoantibody secretion might through its effector cytokine IL-21. Altogether, our data demonstrated that intrathymic Tfh/B cells interaction played a key role in thymic ectopic GCs formation and anti-AChR antibody production, which might trigger MG occurrence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.