Abstract

Abstract Intrathermocline eddies (ITEs), characterized by subsurface lens-shaped low potential vorticity (PV), are pervasive in the ocean. However, the abundance and generation mechanisms of these low-PV lenses are poorly understood owing to their weak surface signals and awkward sizes, which present an observational barrier. Using in situ observations of the northern South China Sea (NSCS), a typical ITE with a lens-shaped low PV at a core depth of 30–150 m and a horizontal size of ∼150 km was captured in May 2021. Combined with PV budget analysis, we investigate the underlying generation mechanism of low PVs within these ITEs using high-resolution reanalysis products. The results suggest that wintertime surface buoyancy loss driven by atmospheric diabatic forcing rather than frictional forcing is a crucial favorable condition for the ITE formation. These enhanced surface buoyancy losses produce a net upward PV flux and decrease PV in the weakly stratified and deep winter mixed layer, which are preconditioned by anticyclonic eddies (AEs). While surface heating in the following spring tends to weaken the surface buoyancy loss and gradually causes a downward PV flux, the surface-injected high PV subsequently caps the low-PV water within the surface-intensified AEs and transforms them into ITEs. Approximately 22% of the 58 AEs detected by satellite altimetry in the NSCS are ITEs. More importantly, the lens-shaped low PVs within them are produced primarily by the enhanced surface buoyancy loss during wintertime. These findings provide a new dynamic explanation for the low-PV generation in ITEs, highlighting the crucial role of atmospheric diabatic forcing. Significance Statement Intrathermocline eddies (ITEs), characterized by a lens-like isopycnal structure that bounds low potential vorticity (PV), are active in the oceanic interior. Although a few previous studies revealed the existence of ITEs in the South China Sea, the source and dynamic generation mechanisms of the lens-shaped low PV still remain elusive. We find that the enhanced surface buoyancy loss due to atmospheric diabatic forcing drives an upward surface PV flux and is identified to produce the low PV. The preexisting anticyclonic eddy, combined with seasonal surface heating in spring, can be easily transformed into the ITE. This study provides a new dynamic understanding for the generation mechanism of ITEs’ low PVs and highlights the contribution of atmospheric diabatic forcing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.