Abstract

Glutamate homeostasis and microglia activation play an important role in the development and maintenance of neuropathic pain. We designed this investigation to examine whether ultra-low dose naloxone administered alone or in combination with morphine could alter the concentration of the excitatory amino acids (EAAs) glutamate and aspartate, as well as the expression of tumor necrosis factor-α (TNF-α) and its receptors (TNFR1 and TNFR2) in the spinal cord dorsal horn of rats with partial sciatic nerve transection (PST). Male Wistar rats underwent intrathecal catheter implantation for drug delivery and were divided in 7 groups: sham-operated + saline (sham), PST + saline (S), PST + 15 ng naloxone (n), PST + 15 µg naloxone (N), PST + 10 µg morphine (M), PST + 15 ng naloxone + 10 µg morphine (Mn), PST + 15 µg naloxone + 10 µg morphine (MN). Thermal withdrawal latency and mechanical withdrawal threshold, TNF-α and TNFR expression in the spinal cord and dorsal root ganglia, and EAAs glutamate and aspartate concentration in cerebrospinal fluid dialysates were measured. Ten days after PST, rats developed hyperalgesia (P < 0.0001) and allodynia (P < 0.0001), and increased TNF-α (P < 0.0001) and TNFR1 expression (P = 0.0009) were measured in the ipsilateral spinal cord dorsal horn. The antihyperalgesic and antiallodynic effects of morphine (10 μg) were abolished by high-dose naloxone (15 μg; P = 0.0031) but enhanced by ultra-low dose naloxone (15 ng; P = 0.0015), and this was associated with a reduction of TNF-α (P < 0.0001) and TNFR1 (P = 0.0009) expression in the spinal cord dorsal horn and EAAs concentration (glutamate: P = 0.0001; aspartate: P = 0.004) in cerebrospinal fluid dialysate. Analysis of variance (ANOVA) or Student t test with Bonferroni correction were used for statistical analysis. Ultra-low dose naloxone enhances the antihyperalgesia and antiallodynia effects of morphine in PST rats, possibly by reducing TNF-α and TNFR1 expression, and EAAs concentrations in the spinal dorsal horn. Ultra-low dose naloxone may be a useful adjuvant for increasing the analgesic effect of morphine in neuropathic pain conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.