Abstract
Adverse effects of morphine on locomotor function after moderate to severe spinal cord injury (SCI) have been reported; however, the effects after mild SCI without damage of lumbar α-motoneurons have not been investigated. We investigated the effects of lumbar intrathecal morphine on locomotor function after mild thoracic SCI and the involvement of classic opioid receptor activation. A mild thoracic contusive SCI was induced in adult rats at the T9-T10 spine level under sevoflurane anesthesia. We evaluated the effects of single doses of intrathecal morphine and selective μ-, δ-, and κ-opioid receptor agonists, continuous infusion of intrathecal morphine for 72 hours, and administration of physiological saline on locomotor function and muscle tone in the hindlimbs. The numbers of damaged and total α-motoneurons in the lumbar spinal cord were also investigated. Single doses of morphine aggravated residual locomotor function after SCI but did not affect functional recovery. Single doses of morphine and μ- and δ-opioid receptor agonists significantly aggravated residual locomotor function with increases in muscle tone after SCI, and the effects of the drugs were reversed by naloxone. In contrast, continuous infusion of morphine led to persistent decline in locomotor function with increased muscle tone, which was not reversed by naloxone, but did not increase the number of damaged lumbar α-motoneurons. These results indicate that a single dose of morphine at an analgesic dose transiently increases muscle tone of the hindlimbs via activation of spinal μ- and δ- opioid receptors, resulting in further deterioration of locomotor function in the acute phase of mild SCI. Our results also suggest that an increased dose of morphine with prolonged administration leads to persistent decline in locomotor function with increased muscle tone via mechanisms other than direct activation of classical opioid receptors. Morphine should be used cautiously even after mild SCI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.