Abstract

Although bone cancer pain is a common intractable clinical symptom, its underlying mechanisms are still elusive. Accumulating evidence reveals that the N-methyl-d-aspartate (NMDA) receptor containing a 2B subunit (NR2B) in the spinal cord contributes to bone cancer pain. Our preliminary study demonstrated that intrathecal injection of fusion peptide Myr-RC-13 could disrupt spinal KIF17/mLin10 interaction, which is an essential component of KIF17-mediated NR2B transport. Here we report a means by infusion of the selected peptide Myr-RC-13 intrathecally to attenuate bone cancer pain. The results showed that inoculation of fibrosarcoma NCTC 2472 cells into the femur cavity of C3H/HeJ mice induced progressive bone cancer pain and resulted in up-regulation of KIF17 and NR2B in the spinal cord. In addition, repetitive spinal delivery of Myr-RC-13 relieved bone cancer-related mechanical allodynia and spontaneous pain behaviors, and down-regulated expression of spinal KIF17 and NR2B. Finally, our results demonstrated that selected peptide Myr-RC-13 was able to attenuate bone cancer pain via decreasing spinal KIF17 and NR2B expressions. Therefore, selected peptide Myr-RC-13 might be a potential analgesic strategy for bone cancer pain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.