Abstract

Oxaliplatin and paclitaxel are considered central components in the treatment of colorectal and breast cancer, respectively. The development of neuropathy during chronic treatment represents the major dose-limiting side effect that leads to discontinuation or interruption of therapies. The management of neuropathy is a challenge to individuate innovative therapeutic strategies based on new targets and correct routes of administration. We evaluated the hypersensitivity reliever effect of different opioid receptor agonists in rat models of oxaliplatin and paclitaxel-induced neuropathy. Compounds were spinally infused by intrathecal catheter. In oxaliplatin-treated rats, 0.3nmol morphine induced the reversion of the mechanical hypersensitivity (Paw-pressure test), nociceptin/orphanin FQ (N/OFQ; 0.3–3nmol) significantly increased the pain threshold without reaching the values of the control animals. The N/OFQ peptide (NOP) receptor full agonist UFP-112 reverted pain threshold alterations at lower dosage (0.1nmol) vs morphine and N/OFQ, the partial agonist UFP-113 (0.1–1nmol) was similar to N/OFQ. The higher efficacy of morphine vs N/OFQ was highlighted also in paclitaxel-treated rats. The mechanical hypersensitivity was fully reverted by 0.1nmol UFP-112 and UFP-113. In conclusion, intrathecal μ opioid peptide (MOP) and NOP receptor agonists relieved chemotherapy-induced neuropathic pain. The synthetic peptides showed valuable potency and efficacy suggesting the NOP system as an exploitable target.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call