Abstract
BackgroundNeuropathic pain induced by spinal or peripheral nerve injury is very resistant to common pain killers, nerve block, and other pain management approaches. Recently, several studies using stem cells suggested a new way to control the neuropatic pain. In this study, we used the spinal nerve L5 ligation (SNL) model to investigate whether intrathecal rat mesenchymal stem cells (rMSCs) were able to decrease pain behavior, as well as the relationship between rMSCs and reactive oxygen species (ROS).MethodsNeuropathic pain of the left hind paw was induced by unilateral SNL in Sprague-Dawley rats (n = 10 in each group). Mechanical sensitivity was assessed using Von Frey filaments at 3, 7, 10, 12, 14, 17, and 24 days post-ligation. rMSCs (10 µl, 1 × 105) or phosphate buffer saline (PBS, 10 µl) was injected intrathecally at 7 days post-ligation. Dihydroethidium (DHE), an oxidative fluorescent dye, was used to detect ROS at 24 days post-ligation.ResultsTight ligation of the L5 spinal nerve induced allodynia in the left hind paw after 3 days post-ligation. ROS expression was increased significantly (P < 0.05) in spinal dorsal horn of L5. Intrathecal rMSCs significantly (P < 0.01) alleviated the allodynia at 10 days after intrathecal injection (17 days post-ligation). Intrathecal rMSCs administration significantly (P < 0.05) reduced ROS expression in the spinal dorsal horn.ConclusionsThese results suggest that rMSCs may modulate neuropathic pain generation through ROS expression after spinal nerve ligation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.