Abstract

Members of the GDNF family of ligands, including neurturin (NTN), have been implicated as potential therapeutic agents for Huntington's disease (HD). The present study examined the ability of CERE-120 (AAV2-NTN) to provide structural and functional protection in the N171-82Q transgenic HD mouse model. AAV2-NTN therapy attenuated rotorod deficits in this mutant relative to control treated transgenics ( p < 0.01). AAV2-NTN treatment significantly reduced the number of transgenic mice that exhibited clasping behavior and partially restored their stride lengths (both p < 0.05). Stereological counts of NeuN-ir neurons revealed a significant neuroprotection in the striatum of AAV2-NTN treated relative to control treated transgenics ( p < 0.001). Most fascinating, stereological counts of NeuN-labeled cells in layers V–VI of prefrontal cortex revealed that intrastriatal AAV2-NTN administration prevented the loss of frontal cortical NeuN-ir neurons seen in transgenic mice ( p < 0.01). These data indicate that gene delivery of NTN may be a viable strategy for the treatment of this incurable disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.