Abstract
The introduction of a covalent interstrand cross-link induces changes in the intrinsic structure and deformability of the DNA helix that are recognized by elements of the DNA repair apparatus. In this context, the solution structure of the undecamer d(CGAAAT*TTTCG)2, where T* represents a N3T–butyl–N3T interstrand cross-link, was determined using molecular dynamics calculations restrained by NOE and dihedral angle data obtained from NMR spectroscopy. The structure of this cross-linked undecamer shows dramatic widening of the major groove of the B-DNA stem without disruption of Watson–Crick base pairing. This change in tertiary structure illustrates the cumulative effect of cooperativity in intrastrand base stacking of an A-tract of three adenines. Further, it is the direct result from the imposition of geometric angular constraints by the cross-link chain on an ApT* and T*pT steps in the segment AAAT*T. The widening of the major groove is due to the dominant contribution of base stacking to the stability of the ApT compared to the TpT step suggesting that the latter is more deformable within a DNA stem. Compared to earlier structures of ethyl cross-linked oligonucleotides, this unique perturbation induced by the butyl moiety offers a new probe for systematic studies of DNA repair mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.