Abstract

Iron is essential for basic cellular functions but in excess is highly toxic. For this reason, free iron and iron storage are controlled in the periphery by elaborate regulatory mechanisms. In contrast, iron regulation in the central nervous system (CNS) is not well defined. Given that excess iron is present after trauma, hemorrhagic stroke and neurodegeneration, understanding normal iron regulation and promoting iron uptake in CNS pathology is crucial. Peripherally, toll-like receptor 4 (TLR4) activation promotes iron sequestration by macrophages. Notably, iron-rich sites of CNS pathology typically contain TLR4 agonists, which may promote iron uptake. Indeed, our recent work showed impaired iron storage after acute spinal cord injury in mice with TLR4 deficiency. Here we used a reductionist model to ask if TLR4 activation in the CNS stimulates iron uptake and promotes neuroprotection from iron-induced toxicity. For this, we measured the ability of microglia/macrophages to sequester exogenous iron and prevent pathology with and without concomitant intraspinal TLR4 activation. Results show that, similar to the periphery, activating intraspinal TLR4 via focal LPS injection increased mRNA encoding iron uptake and storage proteins and promoted iron sequestration into ferritin-expressing macrophages. However, this did not prevent oligodendrocyte and neuron loss. Moreover, replacement of oligodendrocytes by progenitor cells – a normally robust response to in vivo macrophage TLR4 activation – was significantly reduced if iron was present concomitant with TLR4 activation. Thus, while TLR4 signaling promotes CNS iron uptake, future work needs to determine ways to enhance iron removal without blocking the reparative effects of innate immune receptor signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call