Abstract

As populations decline, their intraspecific diversity also diminishes. Population decline may be exacerbated if a decrease in intraspecific diversity also reduces important ecological functions that maintain population numbers. Oyster reefs are severely overharvested, declining by ~85 % worldwide. We tested how increasing within-species diversity of eastern oysters (Crassostrea virginica) using transplants would affect recruitment of oyster larvae, a key function necessary to maintain future populations. If harvesting reduces population numbers, within-species diversity, and connectivity, then oysters may lose the ability to adapt to changing environmental conditions as well as incur lower levels of recruitment that may hasten their decline. Results from laboratory and field studies indicated that oyster larvae use chemical cues from adult oysters and not from associated fouling communities to select settlement sites. To test how increasing within-species diversity of oysters affected recruitment, we collected oysters from three distinct bay systems in Texas, USA, and compared natural settlement in treatments where all oysters were from a single bay to a mixture of all three bays. Significantly greater recruitment occurred in mixed treatments in 2010, 2011, and 2012 even though oyster recruitment varied by order of magnitude during this time. The net biodiversity effect was positive in all 3 years, indicating that increased recruitment in mixed treatments can be greater than the additive effect of the single bay treatments. Losing intraspecific diversity may reduce recruitment and lead to further declines in oyster populations, illustrating the need for understanding how intraspecific diversity influences ecological functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call