Abstract

Masting behavior — variable and synchronized reproduction by a population of plants — has long been recognized as correlating with weather. How and why weather conditions influence seed production is, however, poorly understood. We investigated the relationships between acorn production and both local weather and long-term climate in 10 populations across the geographic range of the valley oak (Quercus lobata Née), a California endemic that matures acorns in a single season. Acorn production was larger following a cold spring in the prior year and dry conditions in the winter and spring immediately preceding acorn maturation; similar patterns were also found, with minor differences, at all 10 individual sites. The strength of the relationships varied geographically in the case of the correlation between winter rainfall and annual acorn production, which was stronger (more negative) at wetter sites. Thus, in contrast to a recent study in Quercus petraea (Matt.) Liebl., weather had generally similar effects on acorn production throughout the range of Q. lobata. Similar to Q. petraea, however, the strength of the relationship between site-level annual acorn production and one of the weather factors affecting acorn production (winter rainfall in the case of Q. lobata) varied geographically in ways that may be related to differences among sites in the degree of pollen limitation. Understanding the mechanisms by which weather affects seed production is challenging but critical if we are to understand how climate change will affect masting behavior in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call