Abstract

Whilst changes in freshwater assemblages along gradients of environmental stress have been relatively well studied, we know far less about intraspecific variation to these same stressors. A stressor common in fresh waters worldwide is leachates from terrestrial plants. Leachates alter the physiochemical environment of fresh waters by lowering pH and dissolved oxygen and also releasing toxic compounds such as polyphenols and tannins, all of which can be detrimental to aquatic organisms. We investigated how chronic exposure to Eucalyptus leaf leachate affected the growth and survival of juvenile southern pygmy perch (Nannoperca australis) collected from three populations with different litter inputs, hydrology and observed leachate concentrations. Chronic exposure to elevated leachate levels negatively impacted growth and survival, but the magnitude of these lethal and sublethal responses was conditional on body size and source population. Bigger fish had increased survival at high leachate levels but overall slower growth rates. Body size also varied among populations and fish from the population exposed to the lowest natural leachate concentrations had the highest average stress tolerance. Significant intraspecific variation in both growth and survival caused by Eucalyptus leachate exposure indicates that the magnitude (but not direction) of these stress responses varies across the landscape. This raises the potential for leachate-induced selection to operate at an among-population scale. The importance of body size demonstrates that the timing of leachate exposure during ontogeny is central in determining the magnitude of biological response, with early life stages being most vulnerable. Overall, we demonstrate that Eucalyptus leachates are prevalent and potent selective agents that can trigger important sublethal impacts, beyond those associated with more familiar fish kills, and reiterate that dissolved organic carbon is more than just an energy source in aquatic environments.

Highlights

  • Environmental gradients such as variation in hydrological or physiochemical conditions can act as important selective agents in freshwater systems (Lake 2003; Lytle and Poff 2004)

  • Less well appreciated is that spatial and temporal variation in stressors can lead to divergent local adaptation or significant trait plasticity among populations within a species (Kawecki and Ebert 2004)

  • Ecology and Evolution published by John Wiley & Sons Ltd

Read more

Summary

Introduction

Environmental gradients such as variation in hydrological or physiochemical conditions can act as important selective agents in freshwater systems (Lake 2003; Lytle and Poff 2004). Many studies have focussed on assemblagelevel changes or among-species comparisons along freshwater environmental gradients; generally, species richness declines and resistance and resilience traits become more common in increasingly harsh environments (Schlosser 1990; Poff and Allan 1995; Fritz and Dodds 2005; Crook et al 2010). Less well appreciated is that spatial and temporal variation in stressors can lead to divergent local adaptation or significant trait plasticity among populations within a species (Kawecki and Ebert 2004).

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call