Abstract

Populations of generalist grazers often contain genotypes with "powerful" and "efficient" strategies. Powerful genotypes grow rapidly on rich-quality resources, but slowly on poorer-quality ones, while efficient genotypes grow relatively better on poorer resources but cannot exploit richer resources as well. Via a "power-efficiency" trade-off, variation in resource quality could maintain genetic diversity. To evaluate this mechanism, we sampled six populations of the freshwater cladoceran Daphnia pulicaria. In persisting (year-round) populations, Daphnia consume resources that vary in quality, whereas in non-persisting (spring-only) populations, Daphnia primarily encounter rich-quality resources. We hypothesized that non-persisting populations harbor no efficient clones (hence should show lower growth on poor-quality resources). Although individuals from non-persisting populations remained smaller than individuals from persisting populations, no evidence arose for a trade-off between powerful and efficient strategies. In fact, growth rates on the two diets were positively correlated (instead of negatively, as predicted). Furthermore, in the persisting populations, we predicted that clonal selection from spring to summer should shift the distribution of genotypes from powerful (specialists on richer spring resources) to efficient (poorer, summer resources). Genetic composition of populations shifted from spring to summer, but not toward more efficient genotypes. Therefore, in these lakes, maintenance of variation among genotypes must stem from more complicated factors than population persistence patterns or seasonal shifts in resource quality alone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call