Abstract

Biodiversity can have cascading effects throughout ecosystems. While these effects are better understood at coarser taxonomic scales of biodiversity, there has been a resurgence in investigating how biodiversity within species may have cascading effects on communities and ecosystems. We investigate the broader trophic implications of intraspecific variation in the riparian tree, Alnus rubra, where immediately local or 'home' litter decomposes faster than 'away' litter in aquatic and terrestrial systems. With climate change shifting the distributions of plants across the globe, it is essential to understand how shifts in the intraspecific traits of leaf litter may have reverberating effects throughout ecosystems. Here, we find that intraspecific variation in leaf litter has fitness implications for invertebrate consumers, including the algivorous Dicosmoecus and detrivorous Psychoglypha caddisflies, which exhibited increased body size and muscle nitrogen content when incubated within in-situ river mesocosms supplied with local A. rubra litter. Litter source altered caddisfly gut microbiomes by increasing relative abundance of methanogens and methanotrophs among the non-local treatment group. Additionally, Dicosmoecus supplied with non-local litter may have shifted their diet towards a higher proportion of algae, as inferred from shifts in gut microbiome composition and isotopic ratios of muscle tissue. Overall, our study demonstrates that shifting distributions of plant genotypes across the globe may cause plant-microbe mismatches that will disrupt patterns of decomposition and may have consequences on the fitness and foraging behavior of consumers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call