Abstract

It is scientifically and clinically important to understand the structure-function scaling of coronary arterial trees in compensatory (e.g., left and right ventricular hypertrophy, LVH and RVH) and decompensatory vascular remodeling (e.g., congestive heart failure, CHF). This study hypothesizes that intraspecific scaling power laws of vascular trees are preserved in hypertrophic hearts but not in CHF swine hearts. To test the hypothesis, we carried out the scaling analysis based on morphometry and hemodynamics of coronary arterial trees in moderate LVH, severe RVH, and CHF compared with age-matched respective control hearts. The scaling exponents of volume-diameter, length-volume, and flow-diameter power laws in control hearts were consistent with the theoretical predictions (i.e., 3, 7/9, and 7/3, respectively), which remained unchanged in LVH and RVH hearts. The scaling exponents were also preserved with an increase of body weight during normal growth of control animals. In contrast, CHF increased the exponents of volume-diameter and flow-diameter scaling laws to 4.25 ± 1.50 and 3.15 ± 1.49, respectively, in the epicardial arterial trees. This study validates the predictive utility of the scaling laws to diagnose vascular structure and function in CHF hearts to identify the borderline between compensatory and decompensatory remodeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.