Abstract
Mycogone perniciosa is the main causative agent of wet bubble disease, which causes severe damage to the production of the cultivated mushroom Agaricus bisporus around the world. Whole-genome sequencing of 12 isolates of M. perniciosa was performed using the Illumina sequencing platform, and the obtained paired-end reads were used to assemble complete mitochondrial genomes. Intraspecific comparisons of conserved protein-coding genes, transfer RNA (tRNA) and ribosomal RNA (rRNA) genes, introns, and intergenic regions were conducted. Five different mitochondrial DNA (mtDNA) haplotypes were detected among the tested isolates, ranging from 89,080 to 93,199 bp in length. All of the mtDNAs contained the same set of 14 protein-coding genes and 2 rRNA and 27 tRNA genes, which shared high sequence similarity. In contrast, the number, insertion sites, and sequences of introns varied greatly among the mtDNAs. Eighteen of 43 intergenic regions differed among the isolates, reflecting 65 single nucleotide polymorphisms, 76 indels, and the gain/loss of nine long fragments. Intraspecific comparison revealed that two introns were located within tRNA genes, which is the first detailed description of mitochondrial tRNA introns. Intronic sequence comparison within the same insertion sites revealed the formation process of two introns, which also illustrated a fast evolutionary rate of introns among M. perniciosa isolates. Based on the intron distribution pattern, a pair of universal primers and four pairs of isolate-specific primers were designed and were used to identify the five mtDNA types. In summary, the rapid gain or loss of mitochondrial introns could be an ideal marker for population genetics analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.