Abstract
The effects of host biodiversity on disease risk may vary greatly depending on host population structure and climatic conditions. Agricultural diseases such as potato late blight, caused by Phytophthora infestans, provide the opportunity to study the effects of intraspecific host diversity that is relatively well-defined in terms of disease resistance phenotypes and may have functional impacts on disease levels. When these systems are present across a climatic gradient, it is also possible to study how season length and conduciveness of the environment to disease may influence the effects of host diversity on disease risk. We developed a simple model of epidemic progress to evaluate the effects on disease risk of season length, environmental disease conduciveness, and host functional divergence for mixtures of a susceptible host and a host with some resistance. Differences in disease levels for the susceptible vs. resistant genotypes shifted over time, with the divergence in disease levels first increasing and then decreasing. Disease reductions from host diversity were greatest for high host divergence and combinations of environmental disease conduciveness and season length that led to moderate disease severity. We also compared the effects of host functional divergence on potato late-blight risk in Ecuador (long seasons), two sites in Peru (intermediate seasons) in El Niño and La Niña years, and the United States (short seasons). There was some evidence for greater disease risk reduction from host diversity where seasons were shorter, probably because of lower regional inoculum loads. There was strong evidence for greater disease reduction when host functional divergence was greater. These results indicate that consideration of season length, environmental conduciveness to disease, and host functional divergence can help to explain the variability in disease response to host diversity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.