Abstract
To compare the effects of osmolality versus viscosity of radio-contrast media on intra-renal oxygenation as determined by blood oxygenation level-dependent (BOLD) MRI in a model of contrast induced nephropathy (CIN). Twenty-four Sprague-Dawley rats were divided into five groups. Nitric oxide synthase inhibitor L-NAME (10 mg/kg), cyclooxygenase inhibitor indomethacin (10 mg/kg), or saline, and radio-contrast iodixanol (high viscosity, 784 or 1600 mg I/kg) or iothalamate (high osmolality, 1600 mg I/kg) were administered. BOLD MRI images were acquired on Siemens 3 Tesla (T) scanner using a multiple gradient recalled echo sequence at baseline, following L-NAME (or saline), indomethacin (or saline), and radio-contrast agents. R2* (=1/T2*) was used as the BOLD MRI parameter in renal medulla and cortex. Mixed-effects models with first order auto-regressive variance-covariance models were used to analyze the data. The magnitude of change in medullary R2* (MR2*) with same dose of iodine was larger with iodixanol compared with iothalalmate both in pretreated groups (303% versus 225.6%, < 0.01) and the control group (191.6% versus -1.8%, P < 0.01). The MR2* change in high dose iodixanol was approximately twice compared with the low dose (303% versus 133%, P < 0.01). The viscosity of radio-contrast seems to play a more significant role than osmolality in terms of renal oxygenation changes as evaluated by BOLD MRI. Additionally, iodixanol induced a dose-dependent increase in renal medullary hypoxia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.