Abstract

Ghrelin is a 28-amino acid peptide hormone that exerts powerful orexigenic effects. Ghrelin receptor expression has been reported in the kidney, but the role of ghrelin in the kidney is unknown. The present studies confirmed ghrelin receptor mRNA expression in the kidneys of normal Sprague Dawley rats (n=6) using reverse transcription polymerase chain reaction (PCR) and sequencing of the 588-bp PCR product. To test intrarenal ghrelin action, uninephrectomized rats received 3 cumulative 1-hour renal interstitial (RI) infusions of 5% dextrose in water (vehicle, n=21), ghrelin (n=10), ghrelin plus specific ghrelin receptor antagonist [D-Lys-3]-GHRP-6 (n=24), or [D-Lys-3]-GHRP-6 alone (n=32). Mean arterial pressure (MAP), urine sodium excretion rate (U(Na)V), glomerular filtration rate (GFR), fractional excretion of sodium (FE(Na)), and fractional excretion of lithium (FE(Li)) were calculated for each period. RI ghrelin infusion significantly decreased U(Na)V to 86 ± 4.9% (P<0.05), 74 ± 6.5% (P<0.01), and 62 ± 10% (P<0.01) of baseline during periods 1 to 3, respectively. Ghrelin also significantly decreased FE(Na) to 68 ± 11% (P<0.05), 57 ± 8.6% (P<0.001), and 59 ± 12% (P<0.01) of baseline, without changing GFR or FE(Li). Identical ghrelin infusions in the presence of [D-Lys-3]-GHRP-6 failed to permit reductions in U(Na)V or FE(Na). Following [D-Lys-3]-GHRP-6 infusion alone, U(Na)V increased from 0.06 ± 0.01 to 0.18 ± 0.03 μmol/min (P<0.0001). Concomitant increases in FE(Na) were also observed (0.23 ± 0.03% to 0.51 ± 0.06% [P<0.001]), without changes in MAP, GFR, or FE(Li). Together, these data introduce a novel intrarenal ghrelin-ghrelin receptor system, which, on activation, significantly increases Na(+) reabsorption at the level of the distal nephron.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.