Abstract

Background: Recently, we demonstrated that arteriosclerosis in the smaller intrarenal arteries is associated with shorter telomere length, independently of history of cardiovascular events and calendar age. This suggests that intrarenal arteriosclerosis reflects replicative senescence, although the underlying molecular alterations remain unclear.Results: Shorter intrarenal telomere length associated significantly with the presence of renal arteriosclerosis (T/S ratio 0.91±0.15 vs. 1.20±0.23 with vs. without arteriosclerosis, p=0.007, test cohort; T/S ratio 0.98 ±0.26 vs. 1.03 ±0.18 with vs. without arteriosclerosis, p=0.02, validation cohort). The presence versus absence of intrarenal arteriosclerosis was associated with differential expression of 1472 transcripts. Pathway analysis revealed enrichment of molecules involved in the superpathway of cholesterol biosynthesis as the most significant. The differential expression of these genes was confirmed in the independent validation cohort. Furthermore, the specific mRNA expression of the molecules in the superpathway of cholesterol biosynthesis associated significantly with intrarenal telomere length, and with history of cardiovascular events.Interpretation: Our study illustrates that the superpathway of cholesterol biosynthesis interacts with the previously published association between shorter telomere length and arteriosclerosis.Methods: This study included a test cohort of 40 consecutive kidney donors (calendar age 48.0 ± 15), with biopsies obtained prior to transplantation. Intrarenal leucocyte telomere length content was assessed using quantitative RT-PCR. Whole genome microarray mRNA expression analysis was performed using Affymetrix Gene 2.0 ST arrays. We investigated the associations between mRNA gene expression, telomere length as marker of replicative senescence, and intrarenal arteriosclerosis (Banff “cv” score = vascular fibrous intimal thickening = intimal hyperplasia) using adjusted multiple regression models. For biological interpretation and pathway overrepresentation analysis, we used Ingenuity Pathway Analysis. The significant pathways and genes were validated in an independent validation cohort of 173 kidney biopsies obtained prior to transplantation.

Highlights

  • Telomeres are complexes of tandem TTAGGG repeats of 5000 to 15000 base pairs that reside at the ends of chromosomes [1]

  • We investigated the associations between mRNA gene expression, telomere length as marker of replicative senescence, and intrarenal arteriosclerosis (Banff “cv” score = vascular fibrous intimal thickening = intimal hyperplasia) using adjusted multiple regression models

  • Whole genome expression analyses in kidney biopsies revealed significant enrichment of the superpathway of cholesterol biosynthesis in the gene expression changes that associate with telomere attrition and with intrarenal arteriosclerosis

Read more

Summary

Introduction

Telomeres are complexes of tandem TTAGGG repeats of 5000 to 15000 base pairs that reside at the ends of chromosomes [1]. We demonstrated that arteriosclerosis in the smaller intrarenal arteries is associated with shorter telomere length, independently of history of cardiovascular events and calendar age. This suggests that intrarenal arteriosclerosis reflects replicative senescence, the underlying molecular alterations remain unclear. The specific mRNA expression of the molecules in the superpathway of cholesterol biosynthesis associated significantly with intrarenal telomere length, and with history of cardiovascular events. We investigated the associations between mRNA gene expression, telomere length as marker of replicative senescence, and intrarenal arteriosclerosis (Banff “cv” score = vascular fibrous intimal thickening = intimal hyperplasia) using adjusted multiple regression models. The significant pathways and genes were validated in an independent validation cohort of 173 kidney biopsies obtained prior to transplantation

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call