Abstract
BackgroundSuboptimal health status is a global public health concern of worldwide academic interest, which is an intermediate health status between health and illness. The purpose of the survey is to investigate the relationship between anxiety statuses and suboptimal health status and to identify the central symptoms and bridge symptoms. MethodsThis study recruited 26,010 participants aged <60 from a cross-sectional study in China in 2022. General Anxiety Disorder-7 (GAD-7) and suboptimal health status short form (SHSQ-9) were used to quantify the levels of anxiety and suboptimal health symptoms, respectively. The network analysis method by the R program was used to judge the central and bridge symptoms. The Network Comparison Test (NCT) was used to investigate the network differences by gender, place of residence, and age in the population. ResultsIn this survey, the prevalence of anxiety symptoms, SHS, and comorbidities was 50.7 %, 54.8 %, and 38.5 %, respectively. “Decreased responsiveness”, “Shortness of breath”, “Uncontrollable worry” were the nodes with the highest expected influence. “Irritable”, “Exhausted” were the two symptom nodes with the highest expected bridge influence in the network. There were significant differences in network structure among different subgroup networks. LimitationsUnable to study the causal relationship and dynamic changes among variables. Anxiety and sub-health were self-rated and may be limited by memory bias. ConclusionsInterventions targeting central symptoms and bridge nodes may be expected to improve suboptimal health status and anxiety in Chinese residents. Researchers can build symptom networks for different populations to capture symptom relationships.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.