Abstract
A high-power, flash-lamp-pumped, Q-switched Ho:YAG laser has been developed to produce up to 150 mJ in a 100-ns Q-switched pulse. The Ho laser was initially used in a direct detection lidar-differential absorption lidar (DIAL) system to measure vertical density profiles of aerosols and water vapor in the atmosphere. It was found, however, that the Ho laser operated simultaneously on two closely spaced spectral emission wavelengths (2.090 and 2.097 µm) and that the distribution of energy between the two wavelengths could change significantly on time scales of several seconds to minutes. Such intrapulse temporal and wavelength shifts were found to alter the atmospheric lidar return significantly because one of the laser lines coincided with a water vapor absorption line in the atmosphere. This laser spectral output problem was overcome by the use of intracavity étalons that controlled the laser spectral-temporal characteristics but reduced the laser output energy to approximately 75 mJ/pulse in a 100-ns pulse length. These results are important as they serve to point out the difficulties of developing and using a high-power 2.1- µm Ho laser for atmospheric lidar when high-resolution spectral and temporal characteristics can significantly influence the lidar return and be misinterpreted as resulting from atmospheric signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.