Abstract

We deal with the problem of intrapulse radar-embedded communication and propose a novel waveform design procedure based on a multiobjective optimization paradigm. More specifically, under both energy and similarity constraints, we devise signals according to the following criterion: constrained maximization of the signal-to-interference ratio and constrained minimization of a suitable correlation index (which is related to the possibility of waveform interception). This is tantamount to jointly maximizing two competing quadratic forms under two quadratic constraints so that the problem can be formulated in terms of a nonconvex multiobjective optimization. In order to solve it, we resort to the scalarization technique, which reduces the vectorial problem into a scalar one using Pareto weights defining the relative importance of the two objectives. At the analysis stage, we assess the performance of the proposed waveform design scheme in terms of symbol error rate and the so-called intercept metric.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.