Abstract
Accurate delineation of the intraprostatic gross tumor volume (GTV) is a prerequisite for treatment approaches in patients with primary prostate cancer (PCa). Prostate-specific membrane antigen PET (PSMA PET) may outperform MRI in GTV detection. However, visual GTV delineation underlies interobserver heterogeneity and is time consuming. The aim of this study was to develop a convolutional neural network (CNN) for automated segmentation of intraprostatic tumor (GTV-CNN) in PSMA PET. Methods: The CNN (3D U-Net) was trained on the 68Ga-PSMA PET images of 152 patients from 2 different institutions, and the training labels were generated manually using a validated technique. The CNN was tested on 2 independent internal (cohort 1: 68Ga-PSMA PET, n = 18 and cohort 2: 18F-PSMA PET, n = 19) and 1 external (cohort 3: 68Ga-PSMA PET, n = 20) test datasets. Accordance between manual contours and GTV-CNN was assessed with the Dice-Sørensen coefficient (DSC). Sensitivity and specificity were calculated for the 2 internal test datasets (cohort 1: n = 18, cohort 2: n = 11) using whole-mount histology. Results: The median DSCs for cohorts 1-3 were 0.84 (range: 0.32-0.95), 0.81 (range: 0.28-0.93), and 0.83 (range: 0.32-0.93), respectively. Sensitivities and specificities for the GTV-CNN were comparable with manual expert contours: 0.98 and 0.76 (cohort 1) and 1 and 0.57 (cohort 2), respectively. Computation time was around 6 s for a standard dataset. Conclusion: The application of a CNN for automated contouring of intraprostatic GTV in 68Ga-PSMA and 18F-PSMA PET images resulted in a high concordance with expert contours and in high sensitivities and specificities in comparison with histology as a reference. This robust, accurate and fast technique may be implemented for treatment concepts in primary prostate cancer. The trained model and the study's source code are available in an open source repository.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.