Abstract

The aim of this study was to investigate the prognostic value of 3-dimensional minimal ablative margin (MAM) quantified by intraprocedural versus initial follow-up computed tomography (CT) in predicting local tumor progression (LTP) after colorectal liver metastasis (CLM) thermal ablation. This single-institution, patient-clustered, tumor-based retrospective study included patients undergoing microwave and radiofrequency ablation between 2016 and 2021. Patients without intraprocedural and initial follow-up contrast-enhanced CT, residual tumors, or with follow-up less than 1 year without LTP were excluded. Minimal ablative margin was quantified by a biomechanical deformable image registration method with segmentations of CLMs on intraprocedural preablation CT and ablation zones on intraprocedural postablation and initial follow-up CT. Prognostic value of MAM to predict LTP was tested using area under the curve and competing-risk regression model. A total of 68 patients (mean age ± standard deviation, 57 ± 12 years; 43 men) with 133 CLMs were included. During a median follow-up of 30.3 months, LTP rate was 17% (22/133). The median volume of ablation zone was 27 mL and 16 mL segmented on intraprocedural and initial follow-up CT, respectively ( P < 0.001), with corresponding median MAM of 4.7 mm and 0 mm, respectively ( P < 0.001). The area under the curve was higher for MAM quantified on intraprocedural CT (0.89; 95% confidence interval [CI], 0.83-0.94) compared with initial follow-up CT (0.66; 95% CI, 0.54-0.76) in predicting 1-year LTP ( P < 0.001). An MAM of 0 mm on intraprocedural CT was an independent predictor of LTP with a subdistribution hazards ratio of 11.9 (95% CI, 4.9-28.9; P < 0.001), compared with 2.4 (95% CI, 0.9-6.0; P = 0.07) on initial follow-up CT. Ablative margin quantified on intraprocedural CT significantly outperformed initial follow-up CT in predicting LTP and should be used for ablation endpoint assessment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.