Abstract
To determine the effectiveness of peptide nucleic acids (PNAs) in vivo, we designed and synthesized PNAs antisense to the mu receptor, the molecular target of morphine for inducing antinociception. Responsiveness of rats to morphine and the levels of mu receptor expression after treatment was measured. We delivered intraperitoneal injections of antisense PNAs targeted to the mu receptor (AS-MOR), mismatch PNAs (AS-MOR MM), antisense PNAs targeted to the neurotensin receptor subtype 1 (AS-NTR1), or saline and then challenged the rats with 5 mg/kg morphine (intraperitonally) or neurotensin directly into the periaqueductal gray region of the brain. To avoid tolerance, separate groups of animals were tested at 24, 48, and 72 h post-PNA treatment. Only animals treated with the AS-MOR showed a reduction in their antinociceptive response to morphine. The lack of effect of morphine on the AS-MOR rats was profound at 24 and 48 h, but animals tested at 72 h were similar to control groups. At 24 h the AS-MOR rats had a significant 55% decrease in the levels of mu receptor in their periaqueductal gray region, while AS-MOR MM rats showed no significant change. Lastly, the AS-MOR rats continued to show a normal antinociceptive response to neurotensin. This study, therefore, provides additional support for the use of PNAs to target proteins within brain by systemically administered PNAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.