Abstract

Intraperitoneal (i.p.) administration of paclitaxel (PTX) is a hopeful therapeutic strategy for peritoneal malignancy. Intravenously (i.v.) injected nanoparticle anticancer drugs are known to be retained in the blood stream for a long time and favorably extravasated from vessels into the interstitium of tumor tissue. In this study, we evaluated the effect of i.p. injection of PTX (PTX-30W), which was prepared by solubulization with water-soluble amphiphilic polymer composed of PMB-30W, a co-polymer of 2-methacryloxyethyl phosphorylcholine and n-butyl methacrylate, for peritoneal dissemination of gastric cancer. In a peritoneal metastasis model with transfer of MKN45P in nude mice, the effect of i.p. administration of PTX-30W was compared with conventional PTX dissolved in Cremophor EL (PTX-Cre). The drug accumulation in peritoneal nodules was evaluated with intratumor PTX concentration and fluorescence microscopic observation. PTX-30W reduced the number of metastatic nodules and tumor volume significantly more than did conventional PTX dissolved in Cremophor EL (PTX-Cre), and prolonged the survival time (P < 0.05). PTX concentration in disseminated tumors measured by HPLC was higher in the PTX-30W than in the PTX-Cre group up to 24 h after i.p. injection. Oregon green-conjugated PTX-30W, i.p. administered, preferentially accumulated in relatively hypovascular areas in the peripheral part of disseminated nodules, which was significantly greater than the accumulation of PTX-Cre. I.p. administration of PTX-30W may be a promising strategy for peritoneal dissemination, due to its superior characteristics to accumulate in peritoneal lesions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call