Abstract

The prospect of ovarian rejuvenation offers the tantalising prospect of treating age-related declines in fertility or in pathological conditions such as premature ovarian failure. The concept of ovarian rejuvenation was invigorated by the indication of the existence of oogonial stem cells (OSCs), which have been shown experimentally to have the ability to differentiate into functional follicles and generate oocytes; however, their clinical potential remains unknown. Furthermore, there is now growing interest in performing ovarian rejuvenation in situ. One proposed approach involves injecting the ovary with platelet rich plasma (PRP). PRP is a component of blood that remains after the in vitro removal of red and white blood cells. It contains blood platelets, tiny anucleate cells of the blood, which are responsible for forming athrombus to prevent bleeding. In addition, PRP contains an array of cytokines and growth factors, as well as a number of small molecules.The utility ofPRP has been investigatedin a range of regenerative medicine approaches and has been shown to induce differentiation of a range of cell types, presumably through the action of cytokines.A handful ofcasereports have described the use of PRP injections into the ovaryin the human, and while these clinical data report promising results, knowledge on the mechanisms and safety of PRP injections into the ovary remain limited.In this article, we summarise some of the physiological detail of platelets and PRP, before reviewing the existing emerging literature in this area. We then propose potential mechanisms by which PRP may be eliciting any effects before reflecting on some considerations for future studies in the area. Importantly, on the basis of our existing knowledge, we suggest that immediate use of PRP in clinical applications is perhaps premature and further fundamental and clinical research on the nature of ovarian insufficiency, as well as the mechanism by which PRP may act on the ovary, is needed to fully understand this promising development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.