Abstract

Introduction: Bowel and bladder function are at risk during tumor resection and other surgeries of the conus, cauda equina, and nerve roots. This study demonstrates the ability to acquire triggered electromyography (t-EMG) from the external urethral sphincter (EUS) muscles by utilizing a urethral catheter with an electrode attached.Methods: A retrospective analysis of neurophysiological monitoring data from two medical centers was performed. Seven intradural tumors and three tethered cord release surgeries that used urethral sphincter electrodes to record t-EMG were included in the analysis. The patients consisted of five females and five males with ages ranging from eight months to 67 years (median: 49 years). Our neuromonitoring paradigm included upper and lower extremity somatosensory evoked potentials (SSEPs) and transcranial electrical motor evoked potentials (TCeMEPs), as well as spontaneous and triggered electromyography (EMG) from the external anal sphincter (EAS), EUS muscles and lower extremity muscles bilaterally. A catheter with urethral electrodes attached was used for recording spontaneous electromyography (s-EMG), t-EMG, and TCeMEPs from the skeletal muscle of the EUS. Train of four (TOF) was also recorded from the abductor hallucis muscle as well for monitoring the level of muscle relaxant.Results: We were able to successfully record t-EMG responses from the EUS muscles in all patients (100%). It is worthy to note that only one patient presented preoperatively with bladder incontinence, urgency, and frequency. Almost immediately in the postoperative phase, the patient’s frequency and urgency improved, and the bladder function normalized within two weeks of having the tumor removed.Conclusions: In this small series, we were able to acquire t-EMG in 100% of patients when recorded from the EUS using a urethral catheter with electrodes built into it. T-EMGs can be attempted in surgeries that put the function of the pelvic floor at risk. More study is needed to establish better statistical methods, better modality efficacy, and a better understanding of intraoperative countermeasures that may be employed when an alert is encountered to prevent impending neurological sequelae.

Highlights

  • Bowel and bladder function are at risk during tumor resection and other surgeries of the conus, cauda equina, and nerve roots

  • A catheter with urethral electrodes attached was used for recording spontaneous electromyography (s-EMG), tEMG, and transcranial electrical motor evoked potentials (TCeMEPs) from the skeletal muscle of the external urethral sphincter (EUS)

  • Received 06/03/2019 Review began 06/05/2019 Review ended 06/06/2019 Published 06/10/2019. In this small series, we were able to acquire triggered electromyography (t-EMG) in 100% of patients when recorded from the EUS using a urethral catheter with electrodes built into it

Read more

Summary

Introduction

Bowel and bladder function are at risk during tumor resection and other surgeries of the conus, cauda equina, and nerve roots. The two urethral sphincters muscles are responsible for controlling micturition and for maintaining urinary continence. The smooth muscle internal urethral sphincter (IUS) is responsible for involuntary control and constriction of the internal urethral orifice. The striated external urethral sphincter (EUS) is responsible for a voluntary control and is part of the somatic nervous system [1]. The pudendal nerve (S2-S3-S4 nerve roots) controls the urethral sphincter. Any damage to the pudendal nerve or EUS may result in a lower urinary tract disorder. This would cause involuntary loss of urine, known as urinary incontinence. Complications involving the urethral sphincter can lead to disorders including urinary incontinence, which can vary in men and women based on anatomical differences

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call